旋風(fēng)除塵器[2] 是由進(jìn)氣管、排氣管、圓筒體、圓錐體和灰斗組成。旋風(fēng)除塵器結(jié)構(gòu)簡單,易于制造、安裝和維護(hù)管理,設(shè)備投資和操作費(fèi)用都較低,已廣泛用于從氣流中分離固體和液體粒子,或從液體中分離固體粒子。在普通操作條件下,作用于粒子上的離心力是重力的5~2500倍,所以旋風(fēng)除塵器的效率顯著高于重力沉降室。利用這一個(gè)原理基礎(chǔ)成功研究出了一款除塵效率為百分之九十以上的旋風(fēng)除塵裝置。在機(jī)械式除塵器中,旋風(fēng)式除塵器是效率最高的一種。它適用于非黏性及非纖維性粉塵的去除,大多用來去除5μm以上的粒子,并聯(lián)的多管旋風(fēng)除塵器裝置對3μm的粒子也具有80~85%的除塵效率。選用耐高溫、耐磨蝕和腐蝕的特種金屬或陶瓷材料構(gòu)造的旋風(fēng)除塵器,可在溫度高達(dá)1000℃,壓力達(dá)500×105Pa的條件下操作。從技術(shù)、經(jīng)濟(jì)諸方面考慮旋風(fēng)除塵器壓力損失控制范圍一般為500~2000Pa。因此,它屬于中效除塵器,且可用于高溫?zé)煔獾膬艋菓?yīng)用廣泛的一種除塵器,多應(yīng)用于鍋爐煙氣除塵、多級除塵及預(yù)除塵。它的主要缺點(diǎn)是對細(xì)小塵粒(<5μm)的去除效率較低。優(yōu)點(diǎn)按照前面軸向速度對流通面積積分的方法,一并計(jì)算常規(guī)旋風(fēng)除塵器安裝了不同類型減阻桿后下降流量的變化,并將各種情況下不同斷面處下降流量除塵器總處理流量的百分比繪入,為表明上、下行流區(qū)過流量的平均值即下降流量與實(shí)際上、下地流區(qū)過流量差別的大小。可看出各模型的短路流量及下降流量沿除塵器高度的變化。與常規(guī)旋風(fēng)除塵器相比,安裝全長減阻桿1#和4#后使短路流量增加但安裝非全長減阻桿H1和H2后使短路流量減少。安裝1#和4#后下降流量沿流程的變化規(guī)律與常規(guī)旋風(fēng)除塵器基本相同,呈線性分布,三條線近科平行下降。但安裝H1和H2后,分布呈折線而不是直線,其拐點(diǎn)恰是減阻桿從下向上插入所伸到的斷面位置。由此還可以看到,非全長減阻桿使得其伸至斷面以上各斷面的下降流量增加,下降流量比常規(guī)除塵器還大,但接觸減阻桿后,下降流量減少很快,至錐體底部達(dá)到或低于常規(guī)除塵器的量值。短路流量的減少可提高除塵效率,增大斷面的下降流量,又能使含塵空氣在除塵器內(nèi)的停留時(shí)間增長,為粉塵創(chuàng)造了更多的分離機(jī)會(huì)。因此,非全長減阻桿雖然減阻效果不如全長減阻桿,但更有利于提高旋風(fēng)除塵器的除塵效率。常規(guī)旋風(fēng)除塵器排氣芯管入口斷面附近存在高達(dá)24%的短路流量,這將嚴(yán)重影響整體除塵效果。如何減少這部分短路流量,將是提高效率的一個(gè)研究方向。非全長減阻桿減阻效果雖然不如全長減阻桿好,但由于其減小了常規(guī)旋風(fēng)除塵器的短路流量及使斷面下降流量增加、使旋風(fēng)除塵器的除塵效率提高,將更具實(shí)際意義。分類①高效旋風(fēng)除塵器,其筒體直徑較小,用來分離較細(xì)的粉塵,除塵效率在95%以上;②大流量旋風(fēng)除塵器,筒體直徑較大,用于處理很大的氣體流量,其除塵效率為50-80%以;③通用型旋風(fēng)除塵器,處理風(fēng)量適中,因結(jié)構(gòu)形式不同,除塵效率波動(dòng)在70-85%之間,④防爆型旋風(fēng)除塵器,本身帶有防爆閥,具有防爆功能。根據(jù)結(jié)構(gòu)形式,可分為長錐體、圓筒體、擴(kuò)散式、旁路型。按組合、安裝情況分為內(nèi)旋風(fēng)除塵器、外旋風(fēng)除塵器、立式與臥式以及單筒與多管旋風(fēng)除塵器。按氣流導(dǎo)入情況,氣流進(jìn)入旋風(fēng)除塵后的流路路線,以及帶二次風(fēng)的形式可概括地分為以下兩種:①切流反轉(zhuǎn)式旋風(fēng)除塵器②軸流式旋風(fēng)除塵器效率因素進(jìn)氣口旋風(fēng)除塵器的進(jìn)氣口是形成旋轉(zhuǎn)氣流的關(guān)鍵部件,是影響除塵效率和壓力損失的主要因素。切向進(jìn)氣的進(jìn)口面積對除塵器有很大的影響,進(jìn)氣口面積相對于筒體斷面小時(shí),進(jìn)入除塵器的氣流切線速度大,有利于粉塵的分離。圓筒體直徑和高度圓筒體直徑是構(gòu)成旋風(fēng)除塵器的最基本尺寸。旋轉(zhuǎn)氣流的切向速度對粉塵產(chǎn)生的離心力與圓筒體直徑成反比,在相同的切線速度下,筒體直徑D越小,氣流的旋轉(zhuǎn)半徑越小,粒子受到的離心力越大,塵粒越容易被捕集。因此,應(yīng)適當(dāng)選擇較小的圓筒體直徑,但若筒體直徑選擇過小,器壁與排氣管太近,粒子又容易逃逸筒體直徑太小還容易引起堵塞,尤其是對于粘性物料。當(dāng)處理風(fēng)量較大時(shí),因筒體直徑小處理含塵風(fēng)量有限,可采用幾臺(tái)旋風(fēng)除塵器并聯(lián)運(yùn)行的方法解決。并聯(lián)運(yùn)行處理的風(fēng)量為各除塵器處理風(fēng)量之和,阻力僅為單個(gè)除塵器在處理它所承擔(dān)的那部分風(fēng)量的阻力。但并聯(lián)使用制造比較復(fù)雜,所需材料也較多,氣體易在進(jìn)口處被阻擋而增大阻力,因此,并聯(lián)使用時(shí)臺(tái)數(shù)不宜過多。筒體總高度是指除塵器圓筒體和錐筒體兩部分高度之和。增加筒體總高度,可增加氣流在除塵器內(nèi)的旋轉(zhuǎn)圈數(shù),使含塵氣流中的粉塵與氣流分離的機(jī)會(huì)增多,但筒體總高度增加,外旋流中向心力的徑向速度使部分細(xì)小粉塵進(jìn)入內(nèi)旋流的機(jī)會(huì)也隨之增加,從而又降低除塵效率。筒體總高度一般以4倍的圓筒體直徑為宜,錐筒體部分,由于其半徑不斷減小,氣流的切向速度不斷增加,粉塵到達(dá)外壁的距離也不斷減小,除塵效果比圓筒體部分好。因此,在筒體總高度一定的情況下,適當(dāng)增加錐筒體部分的高度,有利提高除塵效率,一般圓筒體部分的高度為其直徑的1.5倍,錐筒體高度為圓筒體直徑的2.5倍時(shí),可獲得較為理想的除塵效率。排氣管直徑和深度排風(fēng)管的直徑和插入深度對旋風(fēng)除塵器除塵效率影響較大。排風(fēng)管直徑必須選擇一個(gè)合適的值,排風(fēng)管直徑減小,可減小內(nèi)旋流的旋轉(zhuǎn)范圍,粉塵不易從排風(fēng)管排出,有利提高除塵效率,但同時(shí)出風(fēng)口速度增加,阻力損失增大若增大排風(fēng)管直徑,雖阻力損失可明顯減小,但由于排風(fēng)管與圓筒體管壁太近,易形成內(nèi)、外旋流“短路”現(xiàn)象,使外旋流中部分未被清除的粉塵直接混入排風(fēng)管中排出,從而降低除塵效率。一般認(rèn)為排風(fēng)管直徑為圓筒體直徑的0.5~0.6倍為宜。排風(fēng)管插入過淺,易造成進(jìn)風(fēng)口含塵氣流直接進(jìn)入排風(fēng)管,影響除塵效率排風(fēng)管插入深,易增加氣流與管壁的摩擦面,使其阻力損失增大,同時(shí),使排風(fēng)管與錐筒體底部距離縮短,增加灰塵二次返混排出的機(jī)會(huì)。排風(fēng)管插入深度一般以略低于進(jìn)風(fēng)口底部的位置為宜。由于旋風(fēng)除塵器單位耗鋼量比較大,因此在設(shè)計(jì)方案上比較好的方法是從筒身上部向下材料由厚向薄逐漸遞減!操作工藝參數(shù)在旋風(fēng)除塵器尺寸和結(jié)構(gòu)定型的情況下,其除塵效率關(guān)鍵在于運(yùn)行因素的影響。流速旋風(fēng)除塵器是利用離心力來除塵的,離心力愈大,除塵效果愈好。在圓周運(yùn)動(dòng)(或曲線運(yùn)動(dòng))中粉塵所受到的離心力為F=ma,式中,F(xiàn)——離心力,N;m——粉塵的質(zhì)量,kg;a——粉塵離心加速度,m/s2。因?yàn)椋琣=VT2/R,式中,VT——塵粒的切向速度,m/s;R——?dú)饬鞯男D(zhuǎn)半徑,m,所以,F(xiàn)=mVT/R。可見,在旋風(fēng)除塵器的結(jié)構(gòu)固定(R不變)、粉塵相同(m穩(wěn)定)的情況下,增加旋風(fēng)除塵器人口的氣流速度,旋風(fēng)除塵器的離心力就愈大。旋風(fēng)除塵器的進(jìn)口氣量為Q=3600AVT,式中,Q——旋風(fēng)除塵器的進(jìn)口氣量,m3/h;A——旋風(fēng)除塵器的進(jìn)口截面積,m2。所以,在結(jié)構(gòu)固定(R不變,A不變)、粉塵相同(m穩(wěn)定)的情況下,除塵器人口的氣流速度與進(jìn)口氣量成正比,而旋風(fēng)除塵器的進(jìn)口氣量是由引風(fēng)機(jī)的進(jìn)風(fēng)量決定的。可見,提高進(jìn)風(fēng)口氣流速度,可增大除塵器內(nèi)氣流的切向速度,使粉塵受到的離心力增加,有利提高其除塵效率,同時(shí),也可提高處理含塵風(fēng)量。但進(jìn)風(fēng)口氣流速度提高,徑向和軸向速度也隨之增大,紊流的影響增大。對每一種特定的粉塵旋風(fēng)除塵器都有一個(gè)臨界進(jìn)風(fēng)口氣流速度,當(dāng)超過這個(gè)風(fēng)速后,紊流的影響比分離作用增加更快,使部分已分離的粉塵重新被帶走,影響除塵效果。另外,進(jìn)風(fēng)口氣流增加,除塵阻力也會(huì)急劇上升,壓損增大,電耗增加。綜合考慮旋風(fēng)除塵器的除塵效果和經(jīng)濟(jì)性,進(jìn)風(fēng)口的氣流速度控制在12~20m/s之間,最大不超過25m/s,一般選14m/s為宜。粉塵的狀況粉塵顆粒大小是影響出口濃度的關(guān)鍵因素。處于旋風(fēng)除塵器外旋流的粉塵,在徑向同時(shí)受到兩種力的作用,一是由旋轉(zhuǎn)氣流的切向速度所產(chǎn)生的離心力,使粉塵受到向外的推移作用;另一個(gè)是由旋轉(zhuǎn)氣流的徑向速度所產(chǎn)生的向心力,使粉塵受到向內(nèi)的推移作用。在內(nèi)、外旋流的交界面上,如果切向速度產(chǎn)生的離心力大于徑向速度產(chǎn)生的向心力,則粉塵在慣性離心力的推動(dòng)下向外壁移動(dòng),從而被分離出來;如果切向速度產(chǎn)生的離心力小于徑向速度產(chǎn)生的向心力,則粉塵在向心力的推動(dòng)下進(jìn)入內(nèi)旋流,最后經(jīng)排風(fēng)管排出。如果切向速度產(chǎn)生的離心力等于徑向速度產(chǎn)生的向心力,即作用在粉塵顆粒上的外力等于零,從理論上講,粉塵應(yīng)在交界面上不停地旋轉(zhuǎn)。實(shí)際上由于氣流處于紊流狀態(tài)及各種隨機(jī)因素的影響,處于這種狀態(tài)的粉塵有50%的可能進(jìn)入內(nèi)旋流,有50%的可能向外壁移動(dòng),除塵效率應(yīng)為50%。此時(shí)分離的臨界粉塵顆粒稱為分割粒徑。這時(shí),內(nèi)、外旋流的交界面就象一張孔徑為分割粒徑的篩網(wǎng),大于分割粒徑的粉塵被篩網(wǎng)截留并捕集下來,小于分割粒徑的粉塵,則通過篩網(wǎng)從排風(fēng)管中排出。旋風(fēng)除塵器捕集下來的粉塵粒徑愈小,該除塵器的除塵效率愈高。離心力的大小與粉塵顆粒有關(guān),顆粒愈大,受到離心力愈大。當(dāng)粉塵的粒徑和切向速度愈大,徑向速度和排風(fēng)管的直徑愈小時(shí),除塵效果愈好。氣體中的灰分濃度也是影響出口濃度的關(guān)鍵因素。粉塵濃度增大時(shí),粉塵易于凝聚,使較小的塵粒凝聚在一起而被捕集,同時(shí),大顆粒向器壁移動(dòng)過程中也會(huì)將小顆粒挾帶至器壁或撞擊而被分離。但由于除塵器內(nèi)向下高速旋轉(zhuǎn)的氣流使其頂部的壓力下降,部分氣流也會(huì)挾帶細(xì)小的塵粒沿外壁旋轉(zhuǎn)向上到達(dá)頂部后,沿排氣管外壁旋轉(zhuǎn)向下由排氣管排出,導(dǎo)致旋風(fēng)除塵器的除塵效率不可能為100%。根據(jù)除塵效率計(jì)算公式η=(1-So/Si)×100%,式中,η——除塵效率;So——出口處的粉塵的流人量,kg/h;Si——進(jìn)口處的粉塵的流人量,kg/h。因?yàn)樾L(fēng)除塵器的除塵效率不可能為100%,當(dāng)進(jìn)口粉塵流人量增加后,除塵效率雖有提高,排氣管排出粉
關(guān)于我們 | 友情鏈接 | 網(wǎng)站地圖 | 聯(lián)系我們 | 最新產(chǎn)品
浙江民營企業(yè)網(wǎng) sz-yuerui.com 版權(quán)所有 2002-2010
浙ICP備11047537號(hào)-1